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1. INTRODUCTION

1.0 OBJECTIVE

The primary objective of this study is to develop the Finite Ele-

ment Method ( FEM ) for elec tromagne tic tec hniques to solve the problem of
transient scattering directly in the time domain. The techniques will
then be applied to compute the time-dependent currents induced on straight
thin wires due to an incident plane wave Gaussian pul se.

1.1 Relevance of the Study

Tr ansien t electromagnetic res ponse of struc tures such as strategi c
weapon systems and strategic command , comun ication and control systems to

- I a nuclear electroma gnetic pu l se are of great concern from the point of
view of their vulnerability and survival . Again , the importance of tran-
sient response cannot be overstated in radar target Identifi cation, elec-
tronic warfare and electronic countermeasures. For example, the impulse
resoonse can give a useful characterization of each radar target since
such a res ponse con tai ns al l necessar y radar informa tion in a compact and
understandable form. Strategic systems should be designed to survive the
nuclear transients . Thus, an understanding of the response becomes manda-
tory to impact on and improve the designs of systems. Since the systems,
i n genera l , are compl icated struc tures , they can only be solved numeri-
cally; hence efficient and economi cal numerical techniques are requi red.
The method develo ped i n this study is expected to offer such a tool .

The approach is based on a unique technique for the computation of
currents and fields on arbitrary structures excited by arbitrary sources.
This technique called “Finite Element Method for Electromagnetics (FEMEM)”
predicated on a variational principle governing the physics of the problem
and an approximation procedure to carry out the variati onal expression
integra tion.

1—1

—4



-- .. -

S

1.2 A General Di scussion of Transient Solutions

There are essentially two approaches for solving linear electro-

magnetic problems . One is an indi rect approach in which the physics of

the problem is abstracted either by a differential or by an integral equa-

tion with frequency as the variable. The equations are solved in the fre-
quency domain and then the time domain solution is obtained by inverse
Fourier transform. In the other approach, the governing equati ons are
formulated and solved in the time domain.

In the time domain , the problem can be formulated either in terms
of differential or integral equation . From a numerical solution point of
v iew, the integral equation approach offers definite advantages over the
di fferential equation approach with respect to solution stability and
imposing boundary conditions .

1.3 The Finite Element Method in the Transient Domain

The finite elemen t method has been successful ly appl ied to a hos t
of static or steady state problems, including eigenvalue problems through-
out the many engineering disciplines. The extension of the method to
trans ient pro bl ems may be cred ited to W i l son and Nic kel l~~ in their study
of the heat conduction equati on. Most of the early papers in this area
concerne d so lutions to the diffus ion equa tion i n one form or another.
Although the wave equation has been considered generally by 0den121 there
appears to be no specific solutions to this equation for transient prob-
lems. ~n general , three different approaches are used in solving the
time domain problem in conjunction wi th the FEM. They are:

• (1) In this method , the transient solution is obtained by develop-
ing a recurrence relation with the ordinary finite element equations for

the problem and then time-stepping progressively. This technique will be
further discussed later.

(2) This method depends on the idea of incorporating the time
dimension directly into the finite element analysis as another one of the
unknown nodal degrees of freedom of the systems. In this manner , time is

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Here the ti me span of 
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interest Is divided into fini te elements. Thus, the initial value prob-

lem is converted to a boundary value problem. Solutions for all intervals

of time are obtained simultaneously, with nodes on each wire or surface

t = constant defining the configuration of the system at that time . The
• increase in problem size due to the added time dimension is a disadvantage .

(3) In this approach, the solution is obtained by the mode super-

position method. This technique is also known as the normal mode method
or as modal analysis. The basis of this method is that the modal matri x
of the eigenvalue problem can be used to diagonalize the problem and thus
decouple the multi ple degrees of freedom problem to give several one-
degrees of freedom problem .

One advantage of the mode superposition method over the direct
integration methods is that it reduces the number of equations to be
solved . Since the lower normal modes play a more signi ficant role in the
response than the higher modes, only the lower modes need to be used.
This method has the disadvantage of requiri ng the eigenvalue problem solu-
tion . Again , if the number of degrees of freedom is large, the eigenvalue

• problem is diffi cult. Superposition method is applicable only to linear
problems . Thus, it transpires that the modal superposition method is less
general than the other two methods mentioned earlier.

• j 

. However, it must be mentioned that the advantages inherent in the
finite element formulations can be profitably used in all three methods.
This report primarily concerns i tself wi th the first method . The subse-
quent sections discuss the problem formulation , FEM methodology, code
development, numer ical soluti ons, di scusssions, conclusions and
recommendations .

1—3
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2. MATHEMATICAL FORMULATION

2.0 FORMULATION OF THE VARIATIONAL INTEGRA L

The application of the FEM technique requires that we select the
proper variational principle for the posed problem , express the functional
involved in terms of approximate assumed current distribution functions
which satisfy the boundary conditions and minimi ze this functional to
obtain a set of governing equations which is then solved for the unknown
current distributions at the nodes .

z

S .L

s il o

Figure 2-1 . Geometry of the Problem

The wi re is illumi nated by a plane electromagnetic Gaussian pulse
wi th arbitrary polarization and angle of incidence .

Here the relations will be developed for general validity . Then ,
these will be specialized to the problem at hand. Let 5 (~,t) be the
Induced current on the perfectly conducting structure . The boundary
condition applicable at the surface of a perfectly conducting body is
given by

+
~ ~1 

(2-1 )

where n is un it normal to the surface and E , E and E5 are the total,

2-1
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incident and scattered fields , respectively. This implies that the tan-

gential el ectric field is zero.

The variational form functional L(J) governing the physics of the
problem and containing the quantity of interest J is given by

L(t) ~(i~,t) . ~~ (~,i~;t) 
. 
~ (r;t) dr dr

S SI
(2-2)

_2f ~ (i~,t) • ~ (~,t) dr

whereA andA denote Cauchy principal value integrations over the struc-
ture and dr and drt differential elements . The Kernel K ~~~~~~ Is a
complicated integro-differential operator and is given by

~~~~~~~ ~~~~~~~~~~ { .
~ 
.L + ~~ ~~~~~ 

~~~ 
~~~~~~~~~~~ t = t *

• (2-3)

where 11 , c and ~I are free space permeability , permittivity and imped-
0 0 0 4. 

~~ +ance, respectively; R = r - r’, the vector distance between the observa-

• tion point ~ and the source point ~~; • denotes the divergence operation
in the source coordinates; ~ = t — is the retarded time . It is easily

• + C +
seen that the variation of 1(J) with respect to J leads to the time domain

• 

I 
electric field Integral equation.

6 L(J) = E~ (~,t) - 

~~~

— f  ~~2. f + no ~~
S (2-4)

• 4.

+ — .
~~~~

. J ~~ ‘ . J(r’ ,t) dr ’ 0, r = t - .

Now that the varia tional form is set for the problem , the remain-
der of the FEM technique is a procedure for rendering L(J) stationary by
using an expression for J.

I

2-2
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2.1 Solution of the Variat ional integral Equation by the Finite
Element Method

The FEM is primaril y a numerical procedure for solving complex prob-

l ems . The method was originally used in the field of structura l mechanics ;

but since Its roots belong in mathematics as a class of approximation pro-

• cedure, it can be applied to a wider variety of problems in other areas .
In the FEM , the region of interest is divided into sub-domains or finite
elements , with some functional representation of the solution being

adopted over the elements so that the parameters of the representation
become unknowns of the problems . Usually the element parameters are the
nodal values and their derivatives at the nodes . Although the region of
the problem is discreti zed into elements , the whole domain remains as a
continuum because of the imposed restriction on the continuity across. ele-
ment Interfaces . The mathematical procedure of solving (2-2) by the FEM
is discussed in the following sections .

2.1 .1 SegmentatIon in the Space and Time Coordinates

Examination of Eq (2-2) shows that the source current at r delayed
by a time IL - r~ I/c is affecting the current at the observation point r.
Because of this retardation effect, Eq (2—2) can be solved as an initial —
valued problem by using a time marching procedure . This phenomenon can

1- best be visualized by considering the space—time diagram as shown in
Figure 2—2.

Ct

space

Figure 2—2. The Space-Time Diagram

2—3
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In the space—time diagram each dot represents a space-time point ; the

solid lines are the characteristics of the wave equations and they separa te
the past and the future . To divide the current Into the space and time

coordinates , we expand the current in space and time as

3 (r’,t) = 3
~j 

(~~‘ 
- 

~~~~~~

, t’ - t~) U(~’ - ~
) U(t’ - t~)

1=1 j=l

+ + 
(2-5)

1 if Ir’ - r 1<—
where U (~~~

‘ - = 
I — 2

otherwise
(2-6)

1 if ItI — t~1< ~!2
O otherwise

wi th and as the spatial and temporal increments and J~ represents
the current value within the space segment i and time i nterval j. There-
fore if one postulates that the incident field and all surface current on
S are known or equal to zero for al1 time less than , say to, then
the retarded time effect allows us to start the solution at time to and
to view the integral equation as an initial -valued probl em in a “marching

on ” procedure in time.

2.1.2 The Subdivision of the Spatial Region (A Generalized Approach)

The region R is subdivided into discrete sub—r .~gions or elements ,
each of the same general form, as shown in Fi gure 2—3 , with the boundaries
of each element being plane or curvilinear faces, and with the adjacent
boundaries of any pair of elements being coincident. Commonly used ele-
ments for surfaces are triangular or polygonal form . At similar positions
In each element, a number of points are i dentified as nodes . They are
generally at the vertices of the elements , and at positions such as the
center of an edge, the centroid of a face or the centroid of the element
vo l ume .

Let us denote the nodal values of the solution • at the ~
th node as

Let the number of elements into which region R is subdivided be Nt,

2-4
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and the total number of nodes In R D + B (Boundary) be nd and ~~ 
The

Tota l number of nodes in a s ingle element be n~. Then the nodal values of

• can be generally expressed as a column vector

+1

.

.

• (2— 7)

+

2.1.3 The Element Shape Function

To solve Eq (2—2) by the FEM , one needs to define some shape func—
tions or i nterpolation functions . These functions allow us to express the

• solution • at any position of R in terms of only the nodal values {
~

}.
Therefore, we assume that the solution • can be described in functional
forms, element by element, across the region, i.e., can be defined piece—
wise over the region. Within each element , it will be supposed that $ can
be described by a linear combination of functions N1

e, N2
e, . . .

• . . . N~~, and nodal values •
e, •

e . . . , . . . . •~~~
, thus

$ =

~~~~~~, 
N~~ •

e + N2
e 
•
e + N3

e 
•
e + . . . Nk

e 
•k + . . . + N5~

• (2-8)
• or, in matrix notation

= ~~ (N 1
e N2

e . . . Nke . . . N5
e) {~e} (2—9) J

= ~~ (h
e) {~e} . (2-10)

Note that the superscript e is used here to identi fy a particular element.

The shape functions (Ne) are restricted to being functions of posi-
( tions. Since the true solution • is prescribed as being continuous and

• -

~

- - •-- —
~~

- •



with continuous derivatives (up to some order) across the region , the piece-
wise representation (2—10 ) shoul d have the same properties . Therefore the
shape functions are restricted by the fol lowing conditions :

1. N• e 
= 1 at the ~th node

2. = 0 outs ide element e, wi th the ~th node
as one of Its nodes

3. = N(r), a position function within the elements .

In choosing the shape function , one has to pay attention to convergence in

the FEM . Since it is recognized that the FEM solution to a problem with a
given size of element Is necessarily an approximation to the exact solu-
tion , there must be an assurance that successive finite element solutions

using smaller and smaller elements will converge smoothly to the exact
solution as the element size tends to a point. While comprehensive condi—

• 1 tions ensuring convergence are not yet known for all types of linear problems ,
there are certain criteria that must be observed in order to obtain conver-
gent solutions :

(1) Completeness

H This means that the piecewise representation (2-10) wi thin the
element 0f the variabl e/derivative in a key integral must be capable of
representing any continuous function as the element size decreases .
Mathematically, the piecewise representation calls for a complete set of

• functions such as a polynomial function wi th infinite number of terms.
However , i n a FEM representation, only a finite number of terms is taken .
But as pointed out by Melosh [5] and by Zienklewlcz [6], a monotonic con-
vergence can still be obtained if the number of terms used in the repre-
sentation allow the variable/derivative up to and including order t to
take up any constant value wi thin the element , where t being the highest—
order derivative of the variable in the variational functional .

(2) Compatibility

This means that the representation of the variabl e/derivative in a
key integral of (2—4) must tend to the same continuity as the exact solu-
tion , across the inter-element boundaries , as the size decreases to a point.

H If for a given variational functional , the highest-order derivative

2—7



invo l ved Is of order n, the deri vatives of order up to and including
(n—i ) are known as the principal deri vatives of that variable. Presuming
that the exact solution of the dependent variables are continuous wi th
continuous derivatives up to at least order n. One weak requirement that
the compatibility criterion is satisfied is to require that the varia ble
and their principal derivatives are continuous in the shape function
representation . This means that the highest—order derivative in a key
integral will have a representation that is at worst piecewise continuous ,
in which case the representation will tend to be continuous as the element
reduces to a point. In general , completeness and compatibility are suffi-
cient conditions for convergence in variational finite element methods.
However , these conditions are very strong and can be relaxed [7]. In

practice, the shape functions wil l not be an exact representation of the

true solution , but an approximate one, and the solution obtained will be

similarly approximate .

2.1.4 The Subdivision of the Functional

Since (2-2) represents essentially a quadratic function , we can
wri te it as

• = 5 F(u ,u ,u . . . , Ud) dD , where (2—11)
D

F(u ,u ,u . . . , u ) a u 2 + a u u + a u
1 2 3  d 1 1 1  1 2 1 2  1 3 1 2

(2-12)
+ a

21 U2 
u1 + a22 U

2
2 + . . . + add Ud

2,

and 0 represents the domain of integration which can be a line , surface or
volume , and u1,u2,u3 . . . ,u~ represent the solution • and its various
derivatives, •,~‘ •X~,.’ sy 

. . . . In matrix notation (2-11) becomes

• =f {u}T[A] {u} dD (2-13)

where [A] is a dxd matrix and {u} a dxl column vector, or

a
11 

a
12 

. . . . aid

[A] a21 a22 
a2d (2-14)

adl ad2 . . . . add

2-8
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(U) (2-15)

U
~

and superscript T denotes the transpose of a matrix. In general , the
matrix elements ajj  are functions of the position .

it •
e is the contribution of an element to the total integration in

(2-13), then this equation can be written as

I I
• 

=
.~~~~ •

e ,,
~~~ ~J

.. 1 [A] {u} dDe (2-16)
c—i De

where 0e represents the domain of element e, let us now consider a typical
term U

r 
in Cu) r 0, 1 , 2 By definition , U,. is a spatial

derivative of $, that IS = = Dr+~ 
where ~r represents a spatial

variable of concern.

From (2-10) we have
U = (Ne) {~e} in element e.

~ Thus within element e

U
r 

= Dr = (Dr N
e) {~e} = (Ur

e) (~e} (2-17)

where (U r
e) represents the row vector for the r-derivative of the shape

function . So applying (2-17) for every element , we obtain

Cu) = (U) {~e} (2—18 )
where -

D1 N 1
e D 1 N2

e . . D1 N5e •

D2 N1
e 02 N2

e 
. . . D2 N5e

[U] : : : (2—19)

Od NI
e Dd N2

C . . . Dd NS

2-9 
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Substitution of (2-18) Into (2-13) yields

I
• — 

~~ 
f  (,eJT tu]T (A] [U] {•e} dDe (2-20)

e=l oe
which shows that • is now a function of the 

~d nodal values •1’ •~~

d

2.1.5 The Stationary Condition

In order to solve (2-20) we have to invoke the variational princi-

ple. The condition that • is stationary is given by

• • a . .a. . _ a, •~~ (2-21 )
~~ a~2 a~3 ~ ~ 

• 

~~d
or

= = (0) • (2-22)

/,fl

From (2-16) we get

_____ — 0 . (2-23)
- • e—l

2.1.6 The Element Matri x Equation

To get the element matri x equation we have to combine (2-23) and

(2-20). Considering the term for an element e in (2—20), we get

a.: ...J a [{$e}r (u]T [A) [U] {•
e
}] dOe s (2-24)

a{~ 
} D~ 3{~e} I

t 2-10
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e
Note that a term 

~~~~~
— will be zero unless p is one of the element nodes
p

identifi ed by 1, 2 , s. Also note that the node identifiers

1 , 2, 3, . . , s are not the same as the system node numbers which are
used to represent the total number of nodes in D. For example, if the

tr iangu lar element e has its three vertices Identified in the system node

numbers as 7, 9, and 5, then we can let its node identifiers (now s = 3)
• as 1 ~ .-.. 7, 2 ~~.. 9 and 3 ++ 5. Therefore, the only elements in the column

vector that are non-zero are those that, in terms of element node identi-
fiers , are

a.e a,e
~ .i~

_.. , .

So (2-22) reduces to

a. a•,a.2e 
(2-25)

Letting

• 
• [B] = [U]T [A] [U] , (2-26)

and using

{y}T [Q) {Y} = 2(Q) CV) , (2-27)

we obtain from (2-24)

~ ‘TDe 
2(A 1) {~e} dDe (2-28)

where [A1] is a s x $ matrix

Since {,C} is constant wi th respect to the integration we can write (2-28 )
as

ea. = [A le) (~e} (2-29)

L 
- 

2-11



where

[A te] .f 2EA 1C) dDe (2-30)

If we substitute (2-19) into (2-24) and carry out the mathematics , we will

obtain for the ~~~ el emen t of [Be] as

b1~ 0e 

2 [D1N1
e (a D~ N~

e 
+ a12 D2 N~

e 
+ .... + aid Dd N~

C)

+ D2N1
e (a D1 N; + a

22 
02 N; + + a2d Dd N;)

+ +

+ Dd N1
e (adl D1 N; + ad2 D2 N~

e + .... + add Dd N~
e
)] dDe

(2-31)

Note that in (2-31 ) the subscripts on the Ne are i n terms of the node
• identifiers , no t system node numbers .

Note that the shape functions are explicitly defined functions of
spatial variables. The integrand of a particular term, say

• 

2(D2 N1
e) a

21 (D 1N~
e) dDe

could be evaluated as an explicit function of x, y and z. If ajj are con-
stant coefficients, the prescribed Integration over the defined domain
of the element would , in consequence , evaluate the term as a scalar. The
integration, if simple, could be carried out analytically. However, if
ajj  are complex func tions of x, y and z, then the integration would gener-
all y require a numerical solution . Therefore, the computational time
involved in a problem depends very much on whether ajj are simple or com-
plex functions.
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2.1.7 The Boundary Condition

It is known in boundary-value problems that the solution is not

unique unless it meets all the required boundary conditions . However, in

the variational finite element methods, if the specified boundary condi-
tions are natural boundary conditions for the problem , then it can be shown
that the class of admissible functions is not required to satisfy these.

In order to illustrate the treatment of the boundary condition in the

matrix equation (2-29) let us assume a Dirichlet boundary condition such

that

+ = g(x,y,z) on B. (2-32)

Using (2—32), the nodal values (
~‘p
)B for the boundary nodes on B can be

calculate d yield ing % equa ti ons of the form

g

• +2

(0 , 0 , 0 , ... 0 , 1 , 0 , ... 0) +~ = 
g (2-33)

~th Pos it ion
g

which implies that if •~ :a
tisfles the boundary condition and hence it is

a cons tan t value , then • 0 for an element containing node p. Thus to

include the B.C. in the element matrix equation , the simplest procedure is

to repl ace the ~th row of the matrix (A’s) in (2-29) by the row matrix of
(2-33). In other words, if p is a boundary-condition node, put zeros In
the ~th row of the [Ale] in (2-29) except for a 1 in the diagonal position
and put i n the ~th row of the driving vector the boundary value given by
(2-32).

2-13
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3. THIN WIRE SCATTERING

3.0 APPLICATION OF THE FEM TO THE SCATTERING OF A GAUSSIAN PULSE BY A
THIN CONDUCTING WIRE

The geometry of the problem is given in Figure 3-1 . A perfectly
conducting cylindrical wi re of length I and radius a is located in free

space as noted before.

zf
z = I  ‘~N

A 1~
•

(b)

Figure 3-1 . (a) Geometry of Thin-Wire Scatterer
(b) Subd ivision i nto Fi n ite Eleme nts

The wire is illumi nated by a plane electromagnetic Gaussian pulse ,
_[P(t_tmax )] 2 A

• E (t) = e ~, havin g its E vector along § and angle of m ci-
dence 0, where g is a unit vector perpendicular to k, the propagation
vector, P is the spread parameter and tmax~ the time at which the pulse
reaches its maximum value . Since the wire is thin (

~
- << 1), we can use

the thin-wi re approximation and assume that the current flows only in the
z direction. Therefore, the variational equation (2-2) for the thin-wire
is reduced to

3-1
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F(
~~
,t) =1! I

~
(z ,t) • K(z,z’,~) 

.

I I ’

_2J 12 (z ,t )  • E
~
1 (z ,t) dz (3-1)

1

where

K(z,z’,r) f-~ 
a % . ~

. 
~~~~~ 

~i: 
dt~~ -j-~~, •t = t -

and R = L~. 
- 

~ .
‘ I = ~1(z - z’)2 + a2 • (3-2)

To convert the integra l equation we first divide the straight wire into N5
un iform segmen ts with Nn number of nodes, and then express the current at
any point lying inside a particular segment in terms of a shape function
and the nodal values of that segment. Thus from (2—4) we have, after drop-

• 
• ping the subscri pt z

N5
11 (z ’,t’) 

~~~~~~~ 
I~ (z ’ — z1, t’ — t~) U(z’ — z1) U(t’ — t~)

i 1  j 1 
(3—3)

~l if Iz ’ — z I < 4 -~-with U(z’ - z1) = 
I 2

o otherw i se

I . .C &.~~ ~. I
~~ i i i i~ — ‘~ L <~~~rU(t’ — t.) = 3 — ~~

~ ~0 otherwi se
where I~ represents the shape functi on at the 1th segment and the ~th

time interval . For a given time i nterval , say ~t ’ - tkl ~~~~~~~~~~

- z1, t’ - t~) is a function of space only. Therefore we can express
the shape function I~~ In terms of spatial coordinates .

I

3-2
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3.1 Spatial Shape Function

For the one-dimensional problem , we can represent the shape function
by a polynomial of z. Thus, for ~t’ - t,~ .~ t.

- z., t’ - t~) = N1 + N2z + N3z2 + . . . + Nkz~~~
. (3-4)

The coefficients Nk’s are to be determined by the continuity requirement
across element boundaries. Since the variationa l equation (2-2) involves
first spatial derivative , it is necessary to use a polynomial of at least
second order in order to meet the completeness and compati bility require-
ments for convergence. Thus we let

— z1, t’ — t~) = N1 + N2z + N3z
2. (3—5)

externa l internalnode node

;n
~~~~~~~~~~~~~~ 3

Figure 3-2. An Element with an Internal Node.

• In order to determine N1, N2 and N3 uniquely, we have to pi ck an i nternal
node in an element as shown in Figure 3-2, and require that

= N~ + N2z1 + N3z1
2

*2 = N1 + N2z2 + N3z2
2 

(3—6)

2
*3 = N1 + N2z3 + N3z3

or = N 1 + N2z1 + N3z1
2 

, i = 1 , 2, 3

where •.~ is the noda l value of current at the 1th node.

3-3
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We can write (3-6) in matrix notation ac

—1
N1 1 z 1 z1

2. /+~\
N2 = 1 z2 z2

2 1’ 2 ( 3 — 7 )

N3 i 
~ 3 

~3
2 

\+3)

After some matrix algebra manipulati on we get

/z2z3 (z 3_z2) z 1z3(z1—z3) z1z2(z2—z1) •~

( 
N2 = (z2-z3)(z2+z3) (z3—z1)(z~+z1 ) (z2—z3)(z2+z3) 2

N3 (z3—z2) (z 1—z 3) (z 1— z2) +3

(3-8)

where ~~ = (z 3— z2) (z 3-z1) (z2—z1) . (3—9)

From (3-5) to (3-9 ) we obtain for an element connecting the ~th and the
H (i + 1)th nodes

I (z’ z t’-t 
(Z

m~
Z ’ )( Z i+l

_Z I)  

+ 
(z 1-z’)(z 1~1-z’)

~~~
‘ ~

) 
~

(zm_Zi )(z i+i
_z

i) ~ (Zi
_Z
m)(Zi+i

_Z
m) 

•~ 
(3—10)

+ 
(Z i

_Z I ) ( z
m

_ z I) 

4,.•1+1

zj < z’ < z1,~1

where the subscript m denotes the internal node. Alth ough the interna l
node can be placed at any position within the particular element , it is
usually l ocated at the midpoint of that element.

• 3.2 Time Derivative and Integration Interpolation

• Since the kernel of the variational integral equation (2-2) contains
also first time derivative , it is necessary to do temporal interpolation

3-4
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over adjacent time intervals . A second-order Lagrangian Interpolation is

usually sufficient. Thus we let

113 (z ’—z1, t’_t~) = I~j(z L.zj) U (t —t~)

F t ’ —t .Xt’ -t .+1)
= I.  .(z’—z.) I 3 

113 1 
[(t~

_t
~~1)(t~+1

_t
~~1) 

,j

(t’-t._1 )(t’-t.÷1)+ •. . (3-11)
(t~~1 —t~)(t~+1—t~) 

1 ,3

(v-t .~1)(t’-t.)

~~~~~~~~~~~~~~~~ 
•i ,j+l

tj - t , ~~tj +~~~ ,

where 
~~~~~~ 

represents the nodal current at the ~th node at the ~th time

interval .

• To avoid extrapolation into the future, we have to interpolate the

current at the ~th time step backwards to the j-l and j—2 time steps when

< 0.5 such that

1(t’ — t . ..1)(t’ —t .)
I1~(v~z1~ D’-t~) 

= I
~~
(z’-zi) 

~~~~~~~~ 
i ,j-2

(3-12)

$ + 
(t’-t~....2)(t’-t~) + 

(tI_t
~ _2)(tI_ t

~ ..1) 1
(t~_2

_t
~_1 )(t~

_t
~_ 1) 

1 ‘J 1 (t~_2
_t
~)(t~~1

_t
~) 

+j ,J ] .
Equations (3-li) and (3-12) can be simply written as

I1~ (z ’-z1~t’-t~) = I1~ (z ’-z1) ~~~ 
I~ ~~~ 

(3-13)
n=n 1

3-5
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where
*

= j—1
i f— ~~~.0.5 , and

n2 = j+l c

n1 =j— 2 
Rif~~~~<O .5

= 3

Tn is ei ther given by (3-li) or (3-12). From (3-11) and (3-12) we can also
derive temporal deri vative and integration as

and 

U (t1 _t~)] = Ij .( z 1
~~z .)~~~~~~Q +~~ , (3-14)

- 
U (t’_t~)dt’ = I1~ (z ’_ z1)~~~ D~ •iri (3-15)

n=n i

where Q~ and D~ can be obtained easily from (3—li) and (3—12).

• •~ 3.3 Matrix Equation

9 Substi tution of al l  the pertinent equations as deri ved above into
(2-2) yields the ~

th time step (i .e., t = vat).

F(J) 
~~~~~~~~~~~~~~ ff ~~~ N1 

~~~ 
Q~ 

+

i=l j=1 
~~ 

11 
1

+ ~ Dndl
tJ [
~ 

Ne 
~ e

inj 
dz’dz

- 2~~~ J ~~~~~~~~ N1 
~~ 

E2
1 (z~~t) dz (3-16)

1=1 ~Z j 1~ 
I
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for z1 ~ 
z ~ z1~ 1, Zj 5.. Z ’ 5 ~~~~

-

• 
and ~~ - - t~( <

Note that i and j  are used to denote the 1th and ~th elements while k is

used to denote the kth retarded time interval. The actual time interval

is denoted by v. The summation ~ and ~ denote the summation process
n

over the spatial and temporal interpolations as given by (3-10) and (3-13).

To cast (3-16) into a matrix equation we invoke the stationary prop-
erty of (3-16) by differentiati ng it with respect to each nodal current at

the ~
th time interval and setting the resulting equations equal to zero.

Thus
N
~ 

N
~ f J’~~~~~ NL &

IP [
~
2
~~~~~ Q + no 

(z-z ’)

i j i  n

+ 
1 (z_z

I)f

t

~~~~~~~~~~ 

Dfldt] 
[
~~~N1. ~1~~]dz’dz

N
~ 

N
~

-

~~~~~~~~~ ~I~~j1~ 

N11~ 1~ 1;2.
~~~~

l
~ 

+ no 
(z-z’) a

+ -

~~~~~ 

Dndt] ~~~ N1 61~ 
dz’dz

- 2 

~ f ~~~ N E
1 (z11 t) 

~~~ 
dz = 0 ~ (3-17)

1—1 
~ 

I

n
F where p = 1 , 2 , N and

if i~~~p
= 1  i = p

3-7
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The final form of (3—17) can be symbolically written as

• 
[SI (+~) = (E~ I (F) , (3-18)

where [SJ denotes the system matrix whose coefficients are functions of

space and time. However its time dependence is the same for every time

interval (assumed uniform). Therefore, matrix i nversion is required only
once. (F) denotes a known column vector containing information from pre-

vious computation.

The boundary condition imposed here is

•iv = 0 (3-19)

where i = 1 and i =

3.4 Numerical Integration

• By using the FEM, the integration over the entire wire is now

reduced to a summation of integration over the individual elements. The
• integration in each element is carried out numerically by replacing the

integration by its Riemann sum with unit-weighting coefficient. That is ,
if we divide the i th element i nto N subd ivi sions, we have

f f(z)dz = ~~~f(z~) ~z (3-20)

where A .1 = the domain of the ~th el ement

Az = the size of a subdivision

z = the z coordinates of the center of the
j subdivis ion of the I element.

3.5 Matrix Inversi on
• Since the problem is solved as an initial-value problem , it is not

necessary to invert the matrix at each time step of solution. Matrix
inversion i s done only once at the fi rst time step and the inverted matrix
is stored to be used for the following-on time steps. Thus the solution
after the first time step can be written as

~ iv~ ~[(E
1 I t=t

~
) + (F)] (3-21)

• 
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4. COMPUTER PROGRAM

4.0 A BRIEF DESCRIPTION OF THE COMPUTER PROGRAM

• The computer program developed for this study i s called “TWFEM’ .

It is written in the Fortran IV language . The program consists of a main

program and four subroutines. The input to the programs are: the length

• of the wi re, the radius of the wi re, the number of elements into which

the wire is divided , the size of the time step, the final time for the run ,

the angle of incidence, the gaussian pulse width , the time at which the

gaussian incident field reaches its maximum , and a few control option
parameters for running the program. The output of the program is the cur-
rent distri bution , the incident field strength and the segment excitation
on each node at each time step . Most of these outputs are stored on a
magnetic tape and can be saved for future use. Because of this , the pro-
gram can use the results of the final time step in a previous run as the
initial values for the new run . This capability is designed to save
computational time by eliminating duplicated computation. The numerical
integration is performed by a simple trapezoidal quadrature, and the
matrix i nversion is done only once using the gaussian elimi nation algorithm .
To save computational time , many parameters are stored in common blocks .

4.1 Flow Chart

The structure of the computer program is given in a flow chart as
shown in Figure 4-1.
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5. RESULTS AND DISCUSSIONS

5.0 TRANSIENT CURRENTS

Figure s 5-1 to 5-3 present the i nduced transient currents at the
center of a thin wire when illumi nated by a unit gaussian pulse

(p = 9 x 108 sec 1 , ~~~ = 1 nsec) at angles of incidence 0 = 300, 600

and 9Ø0 • The length of the wi re L, is .5 m and the shape factor

= Un (k-) = 10.02. The wi re is divided into five elements with eleven

nodes (six external and five internal) and the time interval is taken to
be 0.167 nsec. The current is seen to oscillate at the lowest character-
istic frequency of the wi re and decay in an exponential manner. The com-
parison between the FEM results and those obtained by using the method of
moments codet8~ are shown in Figure 5-3. It is seen that extremely good
agreement is obtained between the current predictions by these two

• approaches. Figure 5-4 shows similar results for a wire of 1 m length .
Again very good agreement is indicated between the FEM and the method of
moments . By making the wire thinner , i.e., larger ~ , the current oscil-
lates at a slightly faster rate with smaller peaks. Figure 5-5 shows this
behavior.

As is obvious from the above figures, the time-dependent induced
currents on the wi re depend on various factors including the incident
field’ s magnitude , direction of arrival , polarization , pulse width , wire
length and wi re thickness. It is also interesting to note that the late
time oscillation of the current is determined by the fundamental resonance
frequency of the wi re. It is also obvious that the current waveforms can
be considered as the superposition of damped sinusoids .

5.1 Current Distribution on the Entire Wire as a Function of Time

The current distri bution over the entire length of the wi re depends
on the instant of observation . Figures 5-6 through 5-19 show the instan-
taneous current distributions along the wi re at different time intervals
ranging from t = 0.584 nsec to t = 7.097 nsec. The parameters used in

5-1
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the computation are L = O.5 m, ~2 = 10.02, 0 = 300 and At = 0.167 nsec.

A careful exami nation of these plots shows the temporal development of the

• current along the wire . First , the current starts to build up from the

end of the wire where the incident field pulse hits initially. As time

goes on, the other part of the wi re is also illumi nated and the current
pulse begins to travel wi th the veloci ty of propagation toward the other
end . When the current pulse reaches the other end (Figure 5-8) the cur-

rent pulse reverses its direction of propagation as the current cannot
flow forward any farther. This phenomenon goes on and on until the cur-
rent completely decays due to radiation loss.

Figures 5-20 through 5-33 show the snap shot type current distri-
butions on the wi re for normal incidence at fourteen different instants .
Figure 5-23 shows the reverse polarity of the current distri bution at
t = 2.087 nsec. As one should expect for normal incidence , the current
distributions display the symmetry with respect to the center of the wire.
As the time progresses (Figures 5-24 — 5-33) the current bounces back and
forth with decreasing amplitude but maintaining the syninetry. Ultimately,
the induced current will reradiate away.

5.2 Convergence and Computational Time

Figure 5-34 shows the convergence test for the current at the mid-
die of a thin wi re of l ength L 0.5 m and c~ = 10.023. The number of
elements used in the test are 3, 5 and 7 which correspond to 7, 11 an d 15
nodes. It is seen that the numerical results show a better convergence
in late time than in early time. This is understandable , since in an ini-
tial-value problem the initial values are sensitive to the step size used ,
and the step sizes used in this convergence test are chosen such that
cAt = 1 , where At is the time step and Az is the element size. The corn-
putational time for each run depends on the number of elements and the
number of time steps used . A typical run in this study uses five ele-
ments (11 nodes) and 120 time steps and it takes about 100 sec on the
CDC 6500 mach ine. However, it must be noted that the computer program
has not been optimized to take into account various factors such as struc-
ture symmetry for the broadside illumi nation and possible analytical inte-
gration . Once this is done , the computati onal time can be reduced further.

5-2
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6. CONCLUSIONS AND RECOMMENDATIONS

In this study the finite element method for electromagnetic tech-
niques has been developed to solve transient scattering problems directly
in the time domain. The problem is formulated in terms of a variational
time—dependent integro-differential equation which is to be solved by a
finite difference scheme -in time and a finite element technique in space .
Based on this approach a computer program is written to calculate the

transient current on thin-wire scatterers when excited by a plane wave
gaussian pulse. Numerical results show good accuracy and convergence for
the FEM approach . Thus, it transpires that the FEM can be a good numeri-
cal tool in solving transient electromagnetic problems. As a numerical
method for solving electromagnetic scattering problems , the FEM offers the
followi ng advantages:

(1) Since the formulation is based on the variational pri nci-
ple , the soluti on is more stable and the error is minimi zed .

(2)  Although the region is divided i nto finite elements , the
whole domai n remains as a conti nuum because of the imposed
restriction on the continuity across element interfaces.
This is contrary to the point—matching solution used in
the method of moments where the true soluti on is valid

• only at the matching points in the whole domain.
(3) FEM approacri is particularly useful in handl i ng complex

geometries.

In spite of its advantages, the FEM—based time—domain code developed
here has two shortcomings from a numerical solution point of view . The
shortcomings are:

- 
- (1) The mathematical and bookkeepi ng aspects of the FEM are

involved , and
(2) The computational time seems to be longer as the code is

not optimized .
It i s therefore hoped that further research work in thi s
area woul d allev iate these difficul ties.
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To make this code more usable and application-Oriented , it is

reconinended that this code (a) be extended to arbitrarily-oriented wires

and other complex structures; (b) begeneralized to arbitrary incident

pulse; and (c) be optimized for more efficiency .
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